On the Dido Problem and Plane Isoperimetric Problems

نویسندگان

  • ANDREI A. AGRACHEV
  • JEAN-PAUL A. GAUTHIER
چکیده

This paper is a continuation of a series of papers, dealing with contact sub-Riemannian metrics onR3. We study the special case of contact metrics that correspond to isoperimetric problems on the plane. The purpose is to understand the nature of the corresponding optimal synthesis, at least locally. It is equivalent to studying the associated sub-Riemannian spheres of small radius. It appears that the case of generic isoperimetric problems falls down in the category of generic subRiemannian metrics that we studied in our previous papers (although, there is a certain symmetry). Thanks to the classification of spheres, conjugate-loci and cut-loci, done in those papers, we conclude immediately. On the contrary, for the Dido problem on a 2-d Riemannian manifold (i.e. the problem of minimizing length, for a prescribed area), these results do not apply. Therefore, we study in details this special case, for which we solve the problem generically (again, for generic cases, we compute the conjugate loci, cut loci, and the shape of small sub-Riemannian spheres, with their singularities). In an addendum, we say a few words about: (1) the singularities that can appear in general for the Dido problem, and (2) the motion of particles in a nonvanishing constant magnetic field. Mathematics Subject Classifications (1991): Primary: 05C38, 15A15; Secondary: 05A15, 15A18.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Dido Problem as Modernized by Fejes Toth

Let a finite number of line segments be located in the plane. Let be a circle that surrounds the segments. Define the region enclosed by these segments to be those points that cannot be connected to by a continuous curve, unless the curve intersects some segment. We show that the area of the enclosed region is maximal precisely when the arrangement of segments defines a simple polygon that sati...

متن کامل

The Isoperimetric Problem

This refers to the legend of Dido. Virgil’s version has it that Dido, daughter of the king of Tyre, fled her home after her brother had killed her husband. Then she ended up on the north coast of Africa, where she bargained to buy as much land as she could enclose with an oxhide. So she cut the hide into thin strips, and then she faced, and presumably solved, the problem of enclosing the larges...

متن کامل

Two Problems concerning the Area-perimeter Ratio of Lattice-point-free Regions in the Plane

We give a generalization of Bender's area-perimeter relation for plane lattice-point-free convex regions to simply connected regions, thus we solve a problem posed by M. Silver 10]. Further the result is used for a lattice version of the Dido problem.

متن کامل

Dido’s Problem and Its Impact on Modern Mathematics

Dido’s Problem The Roman poet Publius Vergilius Maro (70–19 B.C.) tells in his epic Aeneid the story of queen Dido, the daughter of the Phoenician king of the 9th century B.C. After the assassination of her husband by her brother she fled to a haven near Tunis. There she asked the local leader, Yarb, for as much land as could be enclosed by the hide of a bull. Since the deal seemed very modest,...

متن کامل

Inequalities that Imply the Isoperimetric Inequality

The isoperimetric inequality says that the area of any region in the plane bounded by a curve of a fixed length can never exceed the area of a circle whose boundary has that length. Moreover, if some region has the same length and area as some circle, then it must be the circle. There are dozens of proofs. We give several arguments which depend on more primitive geometric and analytic inequalit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999